

NASA STTR 2009 Phase I Solicitation

T9.01 Technologies for Human and Robotic Space Exploration Propulsion Design and Manufacturing

Lead Center: MSFC

This subtopic solicits partnerships between academic institutions and small businesses in the following specific areas of interest: Innovative design and analysis techniques, manufacturing, materials, and processes relevant to propulsion systems launch vehicles, crew exploration vehicles, and lunar orbiters and landers. Improvements are sought for increasing safety and reliability and reducing cost and weight of systems and components.

- Polymer Matrix Composites (PMCs) Large-scale manufacturing; innovative automated processes (e.g., fiber placement); advanced non-autoclave curing; damage-tolerant; advanced materials and manufacturing processes for both cryogenic and high-temperature applications.
- Ceramic Matrix Composite (CMCs) and Ablatives CMC materials and processes are projected to significantly increase safety and reduce costs simultaneously while decreasing system weight for space transportation propulsion.
- Solid-state and friction stir welding, which target aluminum alloys, especially those applicable to highperformance aluminum-lithium alloys and aluminum metal-matrix composites, and high strength and high temperature or functionally graded materials.
- New advanced superalloys that resist hydrogen embrittlement and are compatible with high-pressure
 oxygen; innovative thermal-spray or cold-spray coating processes that substantially improve material
 properties, combine dissimilar materials, application of dense deposits of refractory metals and metal
 carbides, and coating on nonmetallic composite materials.
- Improvement in techniques for predicting the acoustic field produced by the operation of a space propulsion system in near ground operation.
- Predictive capability of the performance and environment for systems, solid or liquid propellants, undergoing multi-phase combustion.
- Improvements in prediction of stability and stability margins for liquid, gaseous, and solid propulsion systems.
- Zero net positive suction pressure pump design and analysis techniques.
- Design and analysis tools that accurately model small valves and turbopumps.

Data bases and instrumentation advances required for validation of previously mentioned predicti capabilities.					